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Dxtran is a deterministic transport method typically
used for increasing the sampling in a spherical region
that would otherwise not be adequately sampled because
the probability of scattering toward the region is often
very small. Essentially, the dxtran method splits the par-
ticle into two pieces at each source or collision point:
a piece that arrives (without further collisions) at the
dxtran sphere and a piece that does not. One difficulty
with the dxtran method is that it can introduce a large
weight fluctuation between particles colliding just before
the sphere and particles colliding after crossing the sphere.
New work shows that it is possible to mitigate this diffi-
culty by extending the dxtran sphere concept to a set of
nested dxtran spheres. Each dxtran sphere then shields
its interior from particles whose weights are too large so
that weights are more commensurate with their loca-
tions. Shielding against the large weights not only in-
creases the efficiency of the calculation but the reliability
as well. The effectiveness of the technique in MCNP was
demonstrated on a 1-km air transport problem and on a
concrete duct problem.

I. CURRENT DXTRAN METHOD

The current dxtran ~deterministic transport! method
in MCNP is described fully in the MCNP manual1; here,
only a brief overview is possible. The dxtran method uses
a sphere ~the “dxtran sphere”! to partition the possible
next events after a collision or source event into two
categories:

1. the particle reaches the dxtran sphere before the
next collision or escape, or

2. the particle does not reach the dxtran sphere be-
fore the next collision or escape.

The nondxtran particle is sampled and tallied ~with its
full weight! exactly as it would be sampled if no dxtran
sphere were present, with one exception. If the nondxtran
particle reaches the dxtran sphere on its next flight, it is
killed. Nondxtran particles tend to have much higher
weights than desirable inside the dxtran sphere, so killing
the nondxtran particle tends to keep high-weight parti-
cles from entering the dxtran sphere. The weight of non-
dxtran particles that are killed on the dxtran sphere is
balanced by creating appropriately weighted dxtran
particles on the surface of the dxtran sphere.1 Because
dxtran typically reduces particle weight, the dxtran par-
ticles tend to have low weights. These low weights tend
to be consistent with the weight window inside the dxtran
sphere.

Dxtran works very well when the dxtran sphere is in
a void. Statistical fluctuations arise when the dxtran sphere
is in or near a scattering medium. These fluctuations are
very similar to the statistical behavior of point detector
estimates; this is not surprising because a point detector
is the limit of a dxtran sphere with an infinitesimal ra-
dius. The dxtran method can introduce a large weight
fluctuation between particles colliding just before the
sphere ~high weight! and particles colliding after cross-
ing the sphere ~low weight!. The nested dxtran sphere
concept was devised to control this large weight
fluctuation.

II. NESTED DXTRAN METHOD

The nested dxtran method consists of an arbitrary
collection of nonintersecting dxtran spheres. If sphere B
is totally inside sphere A, then B is “nested” within A.
Note that A and B need not be concentric. In addition,
another sphere C might be nested within B, or both spheres
B and C might be nested within A. For example,

x 2 � y 2 � z 2 � 102 � 0 ~sphere A! ,

x 2 � ~ y � 5!2 � z 2 � 12 � 0 ~sphere B! ,*E-mail: teb@lanl.gov
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or

~x � 1!2 � y 2 � z 2 � 22 � 0 ~sphere C! .

At every collision and source point, a dxtran particle is
placed on every dxtran sphere that the collision is outside
of, and correspondingly, the nondxtran particle is killed
if it tries to enter any nested dxtran sphere from the out-
side ~Fig. 1!. Each dxtran sphere thus shields its interior
from particles whose weights are too high so that weights
are more commensurate with their locations. That is, in
high importance regions inside the dxtran sphere, low
weights that are inversely proportional to the importance
are desired.

III. TWO SAMPLE PROBLEM RESULTS

Problem 1 consisted of a track-length estimate of the
flux inside a 7-cm sphere. The flux was produced by a
14-MeV isotropic neutron placed 1 km ~100 000 cm! from
the 7-cm sphere. Air at constant density was used every-
where in the problem. Weight windows alone ~without
nested dxtran spheres! in a 10-h calculation ~21 685 582
source particles! produced the following mean, relative
error, and figure of merit ~FOM! @i.e., ~rel err!�2 �
time�1 # : 1.6062 � 10�12 n0cm2, 0.1574, and 0.067.

Ten nested dxtran spheres with radii of 7, 15, 30, 60,
125, 250, 500, 1000, 2000, and 4000 cm were used for
the nested dxtran calculation by roughly quadrupling the
solid angle from the source to the tally sphere. Weight
windows and nested dxtran spheres in a 1-h calculation
~154 816 particles! produced the following mean, rela-
tive error, and FOM: 1.7514 �10�12 n0cm2, 0.0189, and
46. This indicates a speedup factor of 686 over weight
windows used alone.

Using the weight window and only the innermost
dxtran sphere produced some erratic, but interesting, re-
sults. A 1-h calculation ~781 007 particles! produced the
following mean, relative error, and FOM: 1.7261�10�12

n0cm2, 0.0096, and 181. The 1-h calculation passed

MCNP’s ten statistical checks. A 24-h calculation
~18 301 168 particles! produced the following mean, rel-
ative error, and FOM: 1.7543 � 10�12 n0cm2, 0.0020,
and 171. Note that the 1-h calculation had a tail slope of
4.3, indicating that only the first three moments of the
score distribution were finite. The central limit theorem
is applicable if the first two moments are finite.1,2 But,
because the fourth moment is infinite, the variance of the
variance ~VOV! is infinite, and thus the sample variance
may not be a good estimate of the true variance. Indeed,
the 24-h calculation shows a nonmonotonic behavior in
the estimated VOV and a slope of only 2.7, indicating a
possibly infinite variance. Note that the estimate depends
on a finite variance. Thus, while high, an FOM of 181 is
statistically unreliable. Indeed, note that despite a small
relative error estimate of 1% at 1 h, the FOM has a rel-
atively large change after 24 h from 181 to 171. This is
characteristic of the poor sampling in point detector es-
timates that often fools the unwary practitioner. Essen-
tially, the tally behaves like a point detector tally because
the radius ~7 cm! is tiny compared to the mean free path
~4300 cm! in the vicinity of the sphere. ~There are many
other indications of inadequate sampling in the output
file as well.! A summary of these results can be found in
Table I.

The concrete duct of problem 2 is another example
where dxtran is often employed. Here the source is a
14-MeV point isotropic neutron source at the bottom of a
straight 2.54-cm radius duct through 200 cm of concrete.
The tally is the current exiting the far end of the duct. A
1-h calculation ~7 995 273 particles! with weight win-
dows alone produced the following mean, relative error,
and FOM: 4.4154 � 10�5 n, 0.0522, and 6.1. A 1-h cal-
culation ~2 191 827 particles! with weight windows and 5
dxtran spheres at radii 2.54, 5, 10, 20, and 50 cm pro-
duced the following mean, relative error, and FOM:
4.3853 �10�5 n, 0.0018, and 5344. Five separate calcu-
lations with single dxtran spheres of 2.54-, 5-, 10-, 20-,
and 50-cm radii produced FOMs of 1561, 2864, 2329,
860, and 164, respectively. As with problem 1, the tail
slope estimate is erratic for these single dxtran sphere

Fig. 1. Nested dxtran sphere scheme roughly configured by a solid angle and w1 � w2 � w3 �� w.
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cases, indicating inadequate sampling. Thus, although
the FOM gain is only a factor of 2 for this problem, the
nested dxtran calculation has much better statistical prop-
erties and is therefore much more believable and reliable
than the single dxtran sphere cases ~Table II!.

IV. CONCLUSION AND FUTURE WORK

The nested dxtran sphere method is a modest, though
useful, extension to the basic dxtran method for two rea-
sons. First, the method significantly improves the FOM.
Second, the method tends to ameliorate the point detector–
like statistical problems that often plague single dxtran
sphere calculations in small solid-angle problems. Al-
though this paper showed nice gains for the nested dxtran
method, it may take some experience to decide on the
number of dxtran spheres and their radii for various types
of problems. Also, a forced collision technique in com-
bination with an entering collision weight window ~in
addition to the free-flight window currently in MCNP!

might provide additional improvements in conjunction
with nested dxtran spheres.

For the future, noting that the nested dxtran method
seems to ameliorate point detector–like statistical prob-
lems, it would be interesting to nest a set of dxtran spheres
around a point detector. One can even imagine an infinite
nest of dxtran spheres around the point detector in com-
bination with a forced collision technique to ensure col-
lisions at all levels of the nest and a stochastic termination
technique for deciding how many levels of nesting to use
at any collision. Such a technique might not only produce
a finite variance ~as do other point detector modifica-
tions! but a finite variance of the variance as well.
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TABLE I

Comparison of MCNP Nested Dxtran Sphere and Nonnested Results for Flux Transported 1 km
in Air from Isotropic 14-MeV Neutrons

Dxtran Technique
Run Time

~h!
Mean

~n0cm2 !
Relative

Error VOV FOM Slope

None 10 1.6062 � 10�12 0.1574 0.3845 0.067 2.0
1 dxtran ~sphere 1! 1 1.7261 � 10�12 0.0096 0.0012 181 4.3
1 dxtran ~sphere 3! 1 1.7414 � 10�12 0.0115 0.0006 126 10.0
1 dxtran ~sphere 5! 1 1.7145 � 10�12 0.0269 0.0020 23 5.3
1 dxtran ~sphere 7! 1 1.7964 � 10�12 0.0908 0.0226 2.0 0.0
1 dxtran ~sphere 9! 1 1.9744 � 10�12 0.2293 0.1280 0.032 0.0
1 dxtran ~sphere 1! 24 1.7543 � 10�12 0.0020 0.0002 171 2.7
10 nested dxtrans 1 1.7514 � 10�12 0.0189 0.0017 46 10.0

TABLE II

Comparison of MCNP Nested Dxtran Sphere and Nonnested Results for Current in a Concrete Duct*

Dxtran Technique
Mean
~n!

Relative
Error VOV FOM Slope

None 4.4154 � 10�5 0.0522 0.0029 6.1 10.0
1 dxtran ~sphere 1! 4.3742 � 10�5 0.0033 0.0195 1561 4.1
1 dxtran ~sphere 2! 4.3766 � 10�5 0.0024 0.0096 2864 7.3
1 dxtran ~sphere 3! 4.3873 � 10�5 0.0027 0.0219 2329 3.2
1 dxtran ~sphere 4! 4.3945 � 10�5 0.0044 0.0109 860 3.7
1 dxtran ~sphere 5! 4.3836 � 10�5 0.0101 0.0052 164 2.4
5 nested dxtrans 4.3853 � 10�5 0.0018 0.0001 5344 10.0

*All calculations took 1 h.
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